
DEEP LEARNING

Conference #5 July 2025
Summer School

Rakib SHEIKH 1,2

rakib.sheikh@cyu.fr

¹ EPSI - Compétences & Développement
² CY Cergy Paris Université - CY-Tech

17/07/2025

mailto:rakib.sheikh@cyu.fr

Lecturers of this conference

Rakib SHEIKH
Lecturer at CY Cergy Paris Université

Lecturer at EPSI Paris and EPSI Arras

This material will soon be available at https://cyu.fr/rakib-sheikh

17/07/2025 1 / 74

https://cyu.fr/rakib-sheikh

01
Context

17/07/2025 2 / 74

Context

Deep Learning is today the most popular paradigm in Data Science.

Popularized since 2006, first by some academic actors, then by big players (GAFAM)

• Initiated a “paradigm shift” in the field of AI
‣ (Tensorflow and Jax by Google, PyTorch by Meta, CudaDNN by Nvidia…)
‣ It allows to speed up development time of complex processing chains
‣ Making complex DL methods available for a large community

Today DL is developing at a much larger scale including
• Software development platform and environments
• Services in multiple domain : Biotech, health, finance, client management, etc, …

17/07/2025 3 / 74

02
Fundamentals of Neural

Networks

17/07/2025 4 / 74

Brain methaphor
Artificial Neural Networks are an important paradigm in statistical machine learning and Artificial Intelligence

Human brain is used as a source of inspiration and a metaphor for developing Artificial NN.
• Human brain is a dense network of 1011 of simple computing unit, the neurons. Each neuron is connected -in mean- to 104 neurons.
• Brain as a computation model:
‣ Distributed computations by simple processing unit
‣ Information and control are distributed
‣ Learning is performed by observing / analyzing hugh quantities of data and also by trials and errors

The foundation calculus of artificial network is : 𝑓(𝑋) = ∑𝑛
𝑖=0 𝑥𝑖𝑤𝑖 + 𝑏0

Where :
‣ 𝑋 are the features inputs (𝑋𝑖 is 1 feature of the set 𝑋)
‣ 𝑤𝑖 are the weight of the node
‣ 𝑏0 is the bias on the node

17/07/2025 5 / 74

Single Neural Network visually explained
ℹ | Definition : Neuron

A neuron is the smallest unit of a neural network. A neural network is a set of connected neuron.

A neuron takes a sets of inputs, represented by a dataset, applies some formulas to produce an output

17/07/2025 6 / 74

Single Neural Network visually explained
• Inputs / output: Number, either positive or negatives
• In the following figure, I have two inputs and one output.

🗒 | Note

There are no limits about the number of inputs and outputs

17/07/2025 7 / 74

Single Neural Network visually explained
Weighted sum and parameters
This is the first calculus that a neuron applies
• It takes each input and multiply it by a weigth 𝑤𝑖
• All results are then summed by a bias 𝑏0

Weight and bias are
called parameters.

These parameters
can be changed, it is
a way to learn a
neural network

17/07/2025 8 / 74

Single Neural Network visually explained

ℹ | Example :

17/07/2025 9 / 74

Single Neural Network visually explained

Activation function
• It is the second calculus made by a neuron.
• It introduce some non-linearity in the model (each features are independent)
• It takes the result of the previous calculus to apply into a new activation function.
• The results are called the output than can be passed on a another neuron.

17/07/2025 10 / 74

Single Neural Network visually explained

Activation function

ℹ | Example : Example of Activation Function : Linear Activation

A Linear activation is the most basic activation function. It takes the input and throw it as an output (no calculus applied)

𝑓(𝑥) = 𝑥

17/07/2025 11 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron.

 | Goal : Predict the price of one night hotel room based from the city center distance.

Let’s have a dataset with 1 feature and 1 target to predict
• Distance from city center will be our feature (m)
• Price ($) will be our target, so the value we want to predict.

We will use a Linear Regressor with a neuron.

17/07/2025 12 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron.
The task is a regression ! Because we are predicting a number in ℝ.

17/07/2025 13 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron.
In the following example, is it obvious that we can draw a line that tries to pass all points in the dataset. This is
what we should teach to our neuron!

17/07/2025 14 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron.
Let’s take only 1 neuron for our neural network model to predict price of our example
• Before moving on, we should formalize how we will make our neuron to learn that line. The following figure will

visually explains in 4 steps as a loop.

17/07/2025 15 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Adjusting Parameters
We are going to apply 2 calculus in 1 neuron (weigth 𝑤1 and activation function 𝑎(𝑧))

17/07/2025 16 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Adjusting Parameters
• Since we have 1 feature, we will have 1 input
• We are going to initialize the 𝑤1 and 𝑏0 with randomized values for the first iteration.
• The calculated value will be stored as 𝑧 value.

17/07/2025 17 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Adjusting Parameters
• We will now apply the activation function
• For this example, we will stay at Linear Activation, so we will have 𝑎(𝑧) = 𝑧

17/07/2025 18 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Launching Predictions
• We just finished adjusting parameters, we can now launch a prediction !
• We still have not learned at this point

While predicting a value, we can miss our target from afar !

⚠ | Warning

This process is call a Forward Pass

17/07/2025 19 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Measuring
• Since we know the target value, we can quantify the model performance by taking the difference between the

predicted value and the actual target.
• This is called the error value

17/07/2025 20 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Loss function
The loss function evaluate how far we missed our target from the prediction, based on the current parameters.
• Imagine you are shooting a penalty kick in football. You have to get the right power, the right aim to score de

goal.

17/07/2025 21 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Loss function : MSE
• We will be using Mean Squared Error
• Each value will be raised to square, so we can have a squared error. Then we apply the

mean, hence the name mean squared error.

17/07/2025 22 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Loss function : Defining a goal
• Our goal through the Loss function is to minimize it during our training loop.
• This is one of the key concept for optimizing hyper-parameters.

17/07/2025 23 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Recalling 𝑤1 and 𝑏0
• Recall a neural network learn by adjusting it’s parameters 𝑤1 and 𝑏0
• We are going to see how 𝑤1 can affect the value of the loss function

17/07/2025 24 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Feedback
At this step, our neuron have not learnt yet!. It is at the feedback step that our neuron will learn.

17/07/2025 25 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Feedback : Learning
Recall the established goal of the loss function was to minimize the error value.
• This can be possible by adjusting 𝑤1 and 𝑏0 parameters.

How far do we have to adjust those parameters?

17/07/2025 26 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Feedback : Minimizing loss
Let’s start 1 training loop step and plot the error value.

• We have to minimize this value close to 0, by adjusting either to the right or to the left, the 𝑤1 value

17/07/2025 27 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Feedback : Loss curve
The Mean Squared Error gives us the following mathematical property:
• By plotting all the possible value of the loss function from 𝑤𝑖 we have a convex function which we will

recall it definition.

ℹ | Definition : Convex Function

Let 𝑓 an application of 𝐼 in ℝ, 𝑓 is a convex function in 𝐼 if

∀(𝑥, 𝑦) ∈ 𝐼2, ∀𝑡 ∈ [0, 1], 𝑓(𝑡𝑥 + (1 − 𝑡)) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦)

By geometric interpretation, A function 𝑓 is convex in 𝐼 if and only
if all graph arc of 𝑓 is below of the chord.

Therefore, the following plot look like 𝑥2 function. Since we already know that 𝑥2 is convex, we are sure
that our loss function contains 1 value that is the absolute minimum. Hence, the optimal value for 𝑤1.

17/07/2025 28 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Feedback : Loss curve
• Its width and position may vary, but its shape will always remain the same.
• Therefore, we can use an alternative definition : ∀𝑥 ∈ 𝐼, ∃𝑎 ∈ 𝑅, 𝑓(𝑎) < 𝑓(𝑥)
• The 𝑓 function have a minimum at 𝑎 if for all values of 𝑥 in the interval 𝐼 represented by 𝑤𝑖 we have 𝑓(𝑥) > 𝑓(𝑎)

17/07/2025 29 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Feedback : New goal : find 𝑎
• Remember : Artificial Intelligence is mathematics (probability and statistics). We

cannot find the true 𝑎, but we can get as close as possible to 𝑎.

17/07/2025 30 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
How can we bring tell our neuron to adjust its parameters so we can minimize the loss ?
• Good news, we can derivate our function, known as gradient descent.
• The gradient value will tell us which direction we should adjust our 𝑤1 value.

17/07/2025 31 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
Gradient descent inform us the steepness of the slope.
• The steeper the slope, the larger the gradient
• A higher gradient indicates that we still far from the optimal minimized value.

17/07/2025 32 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
If we reduce the 𝑤 value, the gradient will also be reduced until we reach 0.
• The first property of a gradient is his magnitude.
• The gradient magnitude informs the neuron how far we are from the optimal value

17/07/2025 33 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
If we reduce the 𝑤 value, the gradient will also be reduced until we reach 0.
• The second property of a gradient is his direction.
• The gradient sign informs the neuron to which direction we have to adjust the value of the 𝑤𝑖
• If the sign of the gradient is negative, then we have to raise the 𝑤1 value. The opposite is true.

17/07/2025 34 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
• The magnitude and the direction of the gradient are the two information that we give to the neuron.
• Since the neuron will have many training steps, we will have plenty of chances to find the minimum.
• For that reason, we call it Gradient Descent.

17/07/2025 35 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Last Step : Adjusting value based on the feedback

17/07/2025 36 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Last Step : Learning rate

17/07/2025 37 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Last Step : Learning rate
We want the Descent Gradient to be the smoothest possible. So we are going to introduce a learning
rate, which will lower the value of the calculated gradient.

The closer we are to 0, the lower will the learning rate.

17/07/2025 38 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Last Step : Cost & Metrics
• At measure step, we have two measures that is calculated

1. Cost : It is the mean of the loss values while training the neural
network. It is a more precise term to define the loss value at
training.
‣ It allows us to monitor internal performance of the network.

The lower, the better
2. Metric : Equivalent of MSE in our example.

‣ Used to evaluate the external performance of the network
Depend of the business context

⚠ | Warning

• The whole process of updating both 𝑤 and 𝑏 parameters is called a Backward Pass
• We have completed one iteration of 4 steps of training, named an epoch

17/07/2025 39 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Last Step : Cost & Metrics

We’ll repeat the four steps for 100 epoch. And once we’ve gone through all the epochs,
training will be complete!

17/07/2025 40 / 74

Single Neural Network visually explained

Applied example : Linear Regressor with a neuron. Last Step : Cost & Metrics
After multiple iteration (epochs), we notice that the MSE is improving and converge closer to 0.

⚠ | Warning

The whole process (iteration
of Forward Pass + Backward
Pass) is called Back
propagation

17/07/2025 41 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Performance during training
At the end of 100 epochs, we trained a neural network with a MSE of 16.4.
• It’s means that for each prediction we made, the corrected value is within +−16.4

17/07/2025 42 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Performance during training
We need to test the model, with data that we never seen before! We don’t need to go through all four steps.
• In prediction we pass through the features (distance) through the neural network and get the prediction (price)

at the other hand
• In measure, we compute the metric (the MSE) of the prediction. The cost is internal to the model and it’s used

only during training, so we don’t need it

17/07/2025 43 / 74

Single Neural Network visually explained
Applied example : Linear Regressor with a neuron. Performance during test
Now, if we are to evaluate a dataset never shown to our network we might have some surprise. We
have a MSE of 144.5. Which is worse than the training phase.
• Be wary of that value, by plotting predicted value, we can see that our predicted values matches the

line trending. Therefore, our model is successfully trained and ready to be deployed.

17/07/2025 44 / 74

Single Neural Network visually explained
What happen when we do not have a convex loss function ?
Let’s suppose we have the following dataset, and the task is classification
• Our goal is to classify the following data into twos classes (Binary)

17/07/2025 45 / 74

Single Neural Network visually explained

When we are going to predict, we will have
a value in ℝ. But since we are in a
classification task, we should have either 0
or 1.

So we are going use Sigmoid, that will bind
any output value between 0 and 1.

Our activation function will be changed
from linear to sigmoid

17/07/2025 46 / 74

Single Neural Network visually explained

Remember, deep learning is mathematics
based, having a value between 0 and 1 can be
compared into a probabilistic problem, such
as :
• The probability of the final class 1 is 80%
• The probability of the final class 0 is 20 %.

We can fix a threshold that will round the
percentage either at 0 or 1 (by default 0,5)

How can we modelise this pattern ?

17/07/2025 47 / 74

Single Neural Network visually explained
Let’s recall how a loss is conceived
• For a regression task, we are using MSE, since it does have a property of having a

function that posses a minimum value (a convex function)
• If we use MSE for a classification tasks, our function will have multiple minimum value,

hence not convex.

17/07/2025 48 / 74

Single Neural Network visually explained
We are going to switch our loss function into Binary Cross Entropy ! So we can
breakdown our classification values into a binary. So we’ll have two curves to optimize
since we now have a convex function :

17/07/2025 49 / 74

Single Neural Network visually explained
All we have to do is to apply our gradient descent (SGD) we’ve seen previously

17/07/2025 50 / 74

Single Neural Network visually explained

Wait ! There’s still some work to be done !
• We also used the MSE as a Metric, so we can ensures that our model learnt something
• We should change our metric, it can be Accuracy

17/07/2025 51 / 74

03
Multi Layer Perceptron

17/07/2025 52 / 74

Multi Layer Perceptron

What if I want a more complexe neural network ? By adding a neuron or changing
activation function into a step, you have now a Multi-Layer Perceptron.

By chaining multiple neuron together, we truly have a neural network !

17/07/2025 53 / 74

Multi Layer Perceptron
ℹ | Definition : Neural Network Architecture

In general, a neural network architecture (a
configuration) consist of three layers types:
• Input layer: A layer with a node for each network

input
• hidden layer(s): A layer full of artificial neurons.
• output layer: A layer representing the network’s

output

Each layer has it’s own number of neurons, or
units.

⚠ | Warning

There should be only one input and one
output layer, but there may be an arbitrary
number of hidden layers.

17/07/2025 54 / 74

Multi Layer Perceptron
Neural networks can be wide: having many neuron in a given hidden layer, or deep
having many hidden layer in the network. It’s up to you to choose the right amount of
neuron without over-fitting, and have a acceptable computational cost.

17/07/2025 55 / 74

Multi Layer Perceptron

https://arxiv.org/abs/1606.07792v1

17/07/2025 56 / 74

https://arxiv.org/abs/1606.07792v1

04
Example of code
implementation

17/07/2025 57 / 74

Example of code implementation

Applied example : Linear Regressor with a neuron. PyTorch
If we were to implement this through a code, we will be using PyTorch implementation. Hence, you
can notice this implementation matches this conference visually explained neural network

1 import torch py
2 # Create a linear model with 1 inpute and 1 target
3 class LinearModel(nn.Module):
4 def __init__(self):
5 super(LinearModel, self).__init__()
6 self.linear = nn.Linear(1, 1)
7
8 def forward(self, x):
9 return self.linear(x) # This is our Linear Activation
10
11 model = LinearModel() # Initialize our model
12 criterion = nn.MSELoss() # Setting our loss metrics to MSE
13 # Setting our Gradient Descent, as shown visually earlier
14 optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

1 # training loop py
2 for epoch in range(epochs)
3 inputs = torch.from_numpy(x_train)
4 target = torch.from_numpy(y_train)
5

6
 optimizer.zero_grad() # Clear any gradient calculation, we

dont want them to carry over the next iteration loop.

7
 ouputs = model(inputs) # Launch prediction, store them in

outputs

8
 loss = criterion(outputs, target) # Calculate loss value

for the predicted output
9 loss.backward() # Calculate feedback gradient
10 optimizer.step() # Apply parameters from feedback gradient
11 print("Epoch {}, Loss {}".format(epoch, loss.item()))

17/07/2025 58 / 74

Example of code implementation

Applied example : Linear Regressor with a neuron. PyTorch
Now to launch prediction with a trained model, we need to implements the inference code like
this

1 import torch py
2
3 with torch.no_grad(): # We don't need gradient in the inference
4 predicted = model(torch.from_numpy(x_test)) # Launch prediction
5 print(predicted) # Print prediction

Note : PyTorch might feel overwhelming at first, but it is the most used framework for
researching, including open source LLM !

17/07/2025 59 / 74

Example of code implementation
Applied example : MLP Tensorflow + Keras for image classification (10 classes)

1 model = tf.keras.models.Sequential([py
2 tf.keras.layer.Flatten(input_shape(28, 28)),
3 tf.keras.layer.Dense(128, activation='relu'),
4 tf.keras.layer.Dropout(0.20), # Deactivate randomly 20% of the network
5 tf.keras.layer.Dense(128, activation='relu'),
6 tf.keras.layer.Dense(10)
7])
8 model.compile(
9 optimizer=tf.keras.optimizer.Adam(0.001), # Self adjusting LR
10 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
11 metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]
12)

13
model.fit(ds_train, epochs=6, validation_data=ds_test) # Do everything we said in the
training loop

Less popular than PyTorch, but beginner friendly.

17/07/2025 60 / 74

Example of code implementation

Sidenode : Backend architecture. (Specific for PyTorch)

As you may know, we have multiple hardware available for training.
• mps for Mac Silicon chip (M1, M2, M3, M4, M5)
• cuda for Nvidia CUDA and AMD ROCm support
• MTIA for META (Facebook) TPU Support (Meta Training and Inference Accelerator)
• XPU For Intel GPU

Question is : How to check and enable automatically a backend accelerator ?

1 if torch.accelerator.is_available(): py
2 device = torch.accelerator.current_accelerator()
3 else
4 device = torch.device("cpu")

17/07/2025 61 / 74

05
Multiclass-classification

17/07/2025 62 / 74

Multiclass-classification

Let’s make it more complicated by
introducing a new type of problem : A
multiclass-classification.

For that, we need to predict the following
classes :
• Silver
• Gold
• Bronze

The label is a category, which means that
order is not implied, we just want to
classify them without worrying about
which class is better than which.

17/07/2025 63 / 74

Multiclass-classification

We know that computers cannot handle
string data, since we are using math.
• We are going to use the One-Hot

Encoding.

It will create a new column for each class.
Then treat each column as a binary
classification output assigning 1 for yes, 0
for no.

17/07/2025 64 / 74

Multiclass-classification

We’re going to start building our network:

• this time using a another activation function : ReLU
• We have 2 columns as input (square)
• And having three neuron. (white circle)
• We need to match the number of class as output, so

we’ll have three neurons for final prediction of
either 1 or 0 (in red)

17/07/2025 65 / 74

Multiclass-classification

Here, we have the 5 first classification.

Take the first data point as an example. for the silver
class should ideally predict 0, 1, and 0 for the first,
second, and third neurons the neural network

In short neurons for each dada point, the neuron of
the actual class should output 1 while other should
output 0.

17/07/2025 66 / 74

Multiclass-classification
We’re also changing the activation function : Softmax The softmax activation performs a
two-step computation on its input : Exponential + Normalisation

Why do we have normalization at the end ?

17/07/2025 67 / 74

Multiclass-classification

1. We’ll need to check for the full layer.
So we have the three unit of neurons,
one for each class.

2. Each neuron performs the
exponentiation on its input, which
then becomes the input for the
normalization step

3. Each input is divided by the sum of all inputs.
This become the output of the neural network.

As a result the sum of all output will always be 1.
This is a useful outcome because we can now treat
the outputs as probability values

17/07/2025 68 / 74

Multiclass-classification

Let’s take an example where the actual class is silver,
And we suppose that each neuron’s softmax
activation produce 0.5, 0.2, and 0.3

Treating them as probabilities, we assign 1 to the
neuron with the largest output and 0 to the other
neurons.

In this example, the predicted class does not match
the actual class. This brings us to the next discussion,
the loss function

17/07/2025 69 / 74

Multiclass-classification

We are going to use :
CategoricalCrossEntropy basically the
same as BinaryCrossEntropy but for more
than 2 classes.

17/07/2025 70 / 74

Multiclass-classification

Here is an example of the loss function. The
actual class is Silver, so we want the NN to
output the highest probability at the second
neuron.

• In one of the earlier epoch, we can see that
the output at the second neuron is 0.3
(bad)

• In one the later epoch, this neuron will
produce 0.6 which is better (loss decreased)

17/07/2025 71 / 74

06
Some popular model

right know

17/07/2025 72 / 74

Some popular model right know

• General use case : LSTM, RNN, GAN, CNN, …
• LLM via Transformers : NEW SINCE 15 JULY 2025 : KIMI-K2 Mistral, DeepSeek, Qwen,

Stable-Diffusion, Grok, GPT, Claude..
• Computer Vision: Yolo, EfficientNet, ResNet..

Common points : they are all feed-forward based archicture.

• Deep Reinforcement Learning Algorithms : Q-Learning, Deep Q-Learning, Double Deep
Q-Learning..

17/07/2025 73 / 74

Thank you for your attention !
This is the end of the morning session !

Bon appétit !

References

• Patrick Gallinari - Introduction to Deep Learning (Sorbonne Université)
• https://www.tensorflow.org/datasets/keras_example

• https://mlu-explain.github.io/neural-networks/

• https://kdimensions.com/

17/07/2025 74 / 74

https://www.tensorflow.org/datasets/keras_example
https://mlu-explain.github.io/neural-networks/
https://kdimensions.com/

	Context
	Fundamentals of Neural Networks
	Brain methaphor
	Single Neural Network visually explained
	Weighted sum and parameters
	Activation function
	Activation function
	Applied example : Linear Regressor with a neuron.
	Applied example : Linear Regressor with a neuron.
	Applied example : Linear Regressor with a neuron.
	Applied example : Linear Regressor with a neuron.
	Applied example : Linear Regressor with a neuron. Adjusting Parameters
	Applied example : Linear Regressor with a neuron. Adjusting Parameters
	Applied example : Linear Regressor with a neuron. Adjusting Parameters
	Applied example : Linear Regressor with a neuron. Launching Predictions
	Applied example : Linear Regressor with a neuron. Measuring
	Applied example : Linear Regressor with a neuron. Loss function
	Applied example : Linear Regressor with a neuron. Loss function : MSE
	Applied example : Linear Regressor with a neuron. Loss function : Defining a goal
	Applied example : Linear Regressor with a neuron. Recalling w1 and b0
	Applied example : Linear Regressor with a neuron. Feedback
	Applied example : Linear Regressor with a neuron. Feedback : Learning
	Applied example : Linear Regressor with a neuron. Feedback : Minimizing loss
	Applied example : Linear Regressor with a neuron. Feedback : Loss curve
	Applied example : Linear Regressor with a neuron. Feedback : Loss curve
	Applied example : Linear Regressor with a neuron. Feedback : New goal : find a
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Last Step : Adjusting value based on the feedback
	Applied example : Linear Regressor with a neuron. Last Step : Learning rate
	Applied example : Linear Regressor with a neuron. Last Step : Learning rate
	Applied example : Linear Regressor with a neuron. Last Step : Cost & Metrics
	Applied example : Linear Regressor with a neuron. Last Step : Cost & Metrics
	Applied example : Linear Regressor with a neuron. Last Step : Cost & Metrics
	Applied example : Linear Regressor with a neuron. Performance during training
	Applied example : Linear Regressor with a neuron. Performance during training
	Applied example : Linear Regressor with a neuron. Performance during test
	What happen when we do not have a convex loss function ?

	Multi Layer Perceptron
	Example of code implementation
	Applied example : Linear Regressor with a neuron. PyTorch
	Applied example : Linear Regressor with a neuron. PyTorch
	Applied example : MLP Tensorflow + Keras for image classification (10 classes)

	Multiclass-classification
	Some popular model right know
	References

