| °® -
7 COMPETENCES
E’ = eps' & DJEVELOPPEMENT

I'école d’ingénierie Réseau d'écoles et de centres de formation
informatique

DEEP LEARNING

Conference #5 July 2025
Summer School

Rakib SHEIKH .2
rakib.sheikh(@cyu.rr

'EPSI - Compétences & Développement
? CY Cergy Paris Université - CY-Tech

17/07/2025

mailto:rakib.sheikh@cyu.fr

I

ecturers of this conference

Rakib SHEIKH

Lecturer at CY Cergy Paris Université
Lecturer at EPSI Paris and EPSI Arras

This material will soon be available at

https.//cyu.fr/rakib-sheikh

17/07/2025

https://cyu.fr/rakib-sheikh

01
Context

17/07/2025

F

ontext

Deep Learning is today the most popular paradigm in Data Science.
Popularized since 2006, first by some academic actors, then by big players (GAFAM)

- Initiated a “paradigm shift” in the field of Al
» (Tensorflow and Jax by Google, PyTorch by Meta, CudaDNN by Nvidia...)
» It allows to speed up development time of complex processing chains
» Making complex DL methods available for a large community

Today DL is developing at a much larger scale including
- Software development platform and environments
- Services in multiple domain : Biotech, health, finance, client management, etc, ...

17/07/2025 Bepsit g3 /74

02
Fundamentals of Neural

Networks

17/07/2025 Eepsi" sxtmma 4 [/ Th

rBrain methaphor

Artificial Neural Networks are an important paradigm in statistical machine learning and Artificial Intelligence

Human brain is used as a source of inspiration and a metaphor for developing Artificial NN.
- Human brain is a dense network of 10! of simple computing unit, the neurons. Each neuron is connected -in mean- to 10* neurons.
- Brain as a computation model:

» Distributed computations by simple processing unit

» Information and control are distributed

» Learning is performed by observing / analyzing hugh quantities of data and also by trials and errors

The foundation calculus of artificial network is: f(X) = " 2w, + by

i=0
Where:

» X are the features inputs (X is 1 feature of the set X)

» w, are the weight of the node

» b is the bias on the node

17/07/2025 Eepsi“‘

I

i | Definition:Neuron

ingle Neural Network visually explained

A neuron is the smallest unit of a neural network. A neural network is a set of connected neuron.

A neuron takes a sets of inputs, represented by a dataset, applies some formulas to produce an output

17/07/2025 Heps

rSingle Neural Network visually explained

- Inputs / output: Number, either positive or negatives
- In the following figure, | have two inputs and one output.

= | Note

There are no limits about the number of inputs and outputs

17/07/2025

rSingle Neural Network visually explained
Weighted sum and parameters

This is the first calculus that a neuron applies
- It takes each input and multiply it by a weigth w,
- All results are then summed by a bias b,

— —
INPUT WEIGHT WEIGHTED

SUM

WEIGHT

Weight and bias are
called parameters.
—_—>

—.— These parameters

WEIGHT can be changed, itis
away to learn a
neural network

17/07/2025 E epsi®

I

ingle Neural Network visually explained

i | Example:

EXAMPLE #1
3.0

EXAMPLE #2

3.0

17/07/2025

I

ingle Neural Network visually explained

Activation function

- Itis the second calculus made by a neuron.

- It introduce some non-linearity in the model (each features are independent)

- It takes the result of the previous calculus to apply into a new activation function.
- The results are called the output than can be passed on a another neuron.

WEIGHTED SUM | ACTIVATION

17/07/2025 Ei epsi®

MPETENCES 10/74

I

Activation function

ingle Neural Network visually explained

i | Example: Example of Activation Function : Linear Activation

A Linear activation is the most basic activation function. It takes the input and throw it as an output (no calculus applied)

flz) =z

17/07/2025 Bepsit g, 11/ 74

rSingle Neural Network visually explained

Applied example : Linear Regressor with a neuron.

M | Goal:Predict the price of one night hotel room based from the city center distance.

Let's have a dataset with 1feature and 1 target to predict
- Distance from city center will be our feature (m)
- Price (§) will be our target, so the value we want to predict.

We will use a Linear Regressor with a neuron.

DISTANCE
(M1)

e EE——

CITY
CENTER DISTANCE

17/07/2025 Ei epsi®

I

Applied example: Linear Regressor with a neuron.

The task is a regression ! Because we are predicting a number in R.

ingle Neural Network visually explained

9.5
DISTANCE

17/07/2025

rSingle Neural Network visually explained
Applied example: Linear Regressor with a neuron.

In the following example, is it obvious that we can draw a line that tries to pass all points in the dataset. This is
what we should teach to our neuron!

9.5
DISTANCE

17/07/2025 Blepsi' (uH8e 14 / T4

rSingle Neural Network visually explained
Applied example: Linear Regressor with a neuron.

Let's take only 1 neuron for our neural network model to predict price of our example
- Before moving on, we should formalize how we will make our neuron to learn that line. The following figure will
visually explains in 4 steps as a loop.

PREDICT

e

ADJUST | 1 MEASURE

FEEDBACK

17/07/2025 Bepsit gmmee.. 15/ 74

I

ingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Adjusting Parameters

We are going to apply 2 calculus in 1 neuron (weigth w, and activation function a(z))

FEATURE WEIGHTED SUM I ACTIVATION

17/07/2025 Beps® s 16 / 74

I

Applied example: Linear Regressor with a neuron. Adjusting Parameters

- Since we have 1feature, we will have 1input
- We are going to initialize the w, and b, with randomized values for the first iteration.
- The calculated value will be stored as z value.

ingle Neural Network visually explained

WEIGHTED SUM

WEIGHT .

BIAS .

17/07/2025

I

ingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Adjusting Parameters

- We will now apply the activation function
- For this example, we will stay at Linear Activation, so we will have a(z) = 2

ACTIVATION

17/07/2025

rSingle Neural Network visually explained
Applied example: Linear Regressor with a neuron. Launching Predictions

- We just finished adjusting parameters, we can now launch a prediction !
- We still have not learned at this point

While predicting a value, we can miss our target from afar!

WEIGHTED SUM I ACTIVATION PREDICTED VALUES

1 | Warning

This process is call a Forward Pass

17/07/2025

I

ingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Measuring

- Since we know the target value, we can quantify the model performance by taking the difference between the
predicted value and the actual target.
- This is called the error value

PREDICTED ACTUAL ERROR
VALUE VALUE

17/07/2025 Bepsit gmmmen.. 20 / 74

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Loss function

The loss function evaluate how far we missed our target from the prediction, based on the current parameters.
- Imagine you are shooting a penalty kick in football. You have to get the right power, the right aim to score de
goal.

LOSS FUNCTION

!

e.a e.a ela
ela ela e.a

PARAMETERS

17/07/2025 Ei epsi®

MPETENCES 2'] / 74

I

Applied example: Linear Regressor with a neuron. Loss function : MSE

- We will be using Mean Squared Error

- Each value will be raised to square, so we can have a squared error. Then we apply the
mean, hence the name mean squared error.

ingle Neural Network visually explained

PREDICTED
VALUES

SQUARED
ERROR

MEAN SQUARED
ERROR

17/07/2025 Blepsi’ (8tEe 22 [T4

I

ingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Loss function : Defining a goal

- Our goal through the Loss function is to minimize it during our training loop.
- This is one of the key concept for optimizing hyper-parameters.

MEAN

MEAN
SQUARED ERROR l sas SQUARED ERROR N

17/07/2025 Eepsi® gmme. 23/ 74

I

ingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Recalling w, and b,

- Recall a neural network learn by adjusting it's parameters w; and b,
- We are going to see how w, can affect the value of the loss function

LOSS FUNCTION

<——}
| | WEIGHT

17/07/2025 Bepsi' smemm. 24 [74

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Feedback

At this step, our neuron have not learnt yet!. It is at the feedback step that our neuron will learn.

FEEDBACK

o

17/07/2025

I

Applied example: Linear Regressor with a neuron. Feedback : Learning

Recall the established goal of the loss function was to minimize the error value.
- This can be possible by adjusting w, and b, parameters.

ingle Neural Network visually explained

How far do we have to adjust those parameters?

17/07/2025

I

Applied example: Linear Regressor with a neuron. Feedback : Minimizing loss

Let's start 1 training loop step and plot the error value.

ingle Neural Network visually explained

/1N

WEIGHT

- We have to minimize this value close to O, by adjusting either to the right or to the left, the w, value

17/07/2025 E epsi®

F

Applied example: Linear Regressor with a neuron. Feedback : Loss curve

The Mean Squared Error gives us the following mathematical property:
- By plotting all the possible value of the loss function from w, we have a convex function which we will
recall it definition.

ingle Neural Network visually explained

i | Definition: Convex Function

Let f an application of I in R, f is a convex functionin I if
V(z,y) € I?,Vt € [0,1], f(tz + (1 —¢)) < tf(z) + (1 —1)f(y)

By geometric interpretation, A function f is convexin I if and only
if all graph arc of f is below of the chord.

WEIGHT

Therefore, the following plot look like 22 function. Since we already know that z2 is convex, we are sure
that our loss function contains 1 value that is the absolute minimum. Hence, the optimal value for w;.

17/07/2025 Eepsi® szt 28 / T4

I

Applied example: Linear Regressor with a neuron. Feedback : Loss curve

- Its width and position may vary, but its shape will always remain the same.
- Therefore, we can use an alternative definition:Vz € I,3a € R, f(a) < f(x)
- The f function have a minimum at a if for all values of xz in the interval I represented by w, we have f(z) > f(a)

ingle Neural Network visually explained

WEIGHT

17/07/2025 Blepsi® st 29 / 74

I

Applied example: Linear Regressor with a neuron. Feedback : New goal: find a

- Remember : Artificial Intelligence is mathematics (probability and statistics). We
cannot find the true a, but we can get as close as possible to a.

ingle Neural Network visually explained

WEIGHT

17/07/2025 Bepsi® gres.. 30/ 74

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent

How can we bring tell our neuron to adjust its parameters so we can minimize the loss ?
- Good news, we can derivate our function, known as gradient descent.
- The gradient value will tell us which direction we should adjust our w; value.

LOSS

WEIGHT

17/07/2025 Bepsi® snde. 31/ 74

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent

Gradient descent inform us the steepness of the slope.
- The steeper the slope, the larger the gradient
- A higher gradient indicates that we still far from the optimal minimized value.

17/07/2025 Eepsit gmme,. 32 / 74

I

Applied example: Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent

If we reduce the w value, the gradient will also be reduced until we reach O.
- The first property of a gradient is his magnitude.
- The gradient magnitude informs the neuron how far we are from the optimal value

ingle Neural Network visually explained

17/07/2025 Bepsi' smmm. 33 /74

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent

If we reduce the w value, the gradient will also be reduced until we reach O.

- The second property of a gradient is his direction.

- The gradient sign informs the neuron to which direction we have to adjust the value of the w,
- If the sign of the gradient is negative, then we have to raise the w, value. The opposite is true.

17/07/2025 Eepsi' oo 34 / T4

I

ingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent

- The magnitude and the direction of the gradient are the two information that we give to the neuron.
- Since the neuron will have many training steps, we will have plenty of chances to find the minimum.
- For that reason, we call it Gradient Descent.

17/07/2025 Bepsi® srmn. 35/ 74

I

Applied example: Linear Regressor with a neuron. Last Step : Adjusting value based on the feedback

ingle Neural Network visually explained

ADJUST

17/07/2025 Beps' smms. 36 /74

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Last Step : Learning rate

Whew = Woprevious = alpha x dw

dw

WDFEV . Wnew

17/07/2025

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Last Step : Learning rate

We want the Descent Gradient to be the smoothest possible. So we are going to introduce a learning
rate, which will lower the value of the calculated gradient.

The closer we are to 0, the lower will the learning rate.

WITHOUT WITH
LEARNING RATE LEARNING RATE

17/07/2025 Bepsi' w38 /74

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Last Step : Cost & Metrics
- At measure step, we have two measures that is calculated
1. Cost: It is the mean of the loss values while training the neural
network. It is a more precise term to define the loss value at

INTERNAL EXTERNAL

training.
» It allows us to monitor internal performance of the network. a
The lower, the better METRIC
2. Metric: Equivalent of MSE in our example.
» Used to evaluate the external performance of the network z

Depend of the business context

1 | Warning

- The whole process of updating both w and b parameters is called a Backward Pass
We have completed one iteration of 4 steps of training, named an epoch

17/07/2025 Bepsi® gremes.. 39 / 74

I

Applied example: Linear Regressor with a neuron. Last Step : Cost & Metrics

OF EPOCHS
e ——

ingle Neural Network visually explained

OF TRAINING DATA # OF TRAINING DATA
N e ——

We'll repeat the four steps for 100 epoch. And once we've gone through all the epochs,
training will be complete!

17/07/2025 Bepsit s 40 / 74

I

Applied example: Linear Regressor with a neuron. Last Step : Cost & Metrics
After multiple iteration (epochs), we notice that the MSE is improving and converge closer to O.

ingle Neural Network visually explained

METRIC

1 | Warning

The whole process (iteration
of Forward Pass + Backward
Pass) is called Back
propagation

100 EPOCHS 100 EPOCHS

17/07/2025 Bepsi' oz 41/ 74

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Performance during training

At the end of 100 epochs, we trained a neural network with a MSE of 16.4.
- It's means that for each prediction we made, the corrected value is within +—16.4

MSE =16.4

Ho

O
O -0
PREDICTED

ACTUAL O

9.5
DISTANCE

17/07/2025 Bepsi® srinde. 42/ T4

rSingle Neural Network visually explained

Applied example: Linear Regressor with a neuron. Performance during training

We need to test the model, with data that we never seen before! We don’t need to go through all four steps.

- In prediction we pass through the features (distance) through the neural network and get the prediction (price)
at the other hand

- In measure, we compute the metric (the MSE) of the prediction. The cost is internal to the model and it's used
only during training, so we don’t need it

TESTING

TEST DATA

PREDICT

l MEASURE

METRIC

17/07/2025 Bepsi® gmmwes.. 43 /T4

rSingle Neural Network visually explained
Applied example: Linear Regressor with a neuron. Performance during test

Now, if we are to evaluate a dataset never shown to our network we might have some surprise. We

have a MSE of 144.5. Which is worse than the training phase.

- Be wary of that value, by plotting predicted value, we can see that our predicted values matches the
line trending. Therefore, our model is successfully trained and ready to be deployed.

PREDICTION - TEST DATA

MSE =144.5

PREDICTED
ACTUAL O

8.5
DISTANCE

17/07/2025 Bepsit gmmmes.. 44 [T4

rSingle Neural Network visually explained

What happen when we do not have a convex loss function ?

Let's suppose we have the following dataset, and the task is classification
- Our goal is to classify the following data into twos classes (Binary)

TRAINING DATA

DISTANCE

17/07/2025

I

ingle Neural Network visually explained

DATA IN DATA OUT

N — When we are going to predict,. we will have

SIGMOID avalue in R. But since we arein a
classification task, we should have either O
or1.

ﬂ—ﬁ% So we are going use Sigmoid, that will bind
any output value between O and 1.

Our activation function will be changed
from linear to sigmoid

17/07/2025 Elepsi' 528 46 / T4

I

ingle Neural Network visually explained

Remember, deep learning is mathematics
based, having a value between 0 and 1 can be
compared into a probabilistic problem, such
as:

- The probability of the final class 1is 80%

- The probability of the final class 0 is 20 %.

We can fix a threshold that will round the
percentage either at 0 or 1 (by default 0,5)

How can we modelise this pattern ?

17/07/2025

rSingle Neural Network visually explained

Let's recall how a loss is conceived

- For a regression task, we are using MSE, since it does have a property of having a
function that posses a minimum value (a convex function)

- If we use MSE for a classification tasks, our function will have multiple minimum value,
hence not convex.

CONVEX MON-CONVEX

17/07/2025 Blepsi’ 3uiBe 48 / T4

I

ingle Neural Network visually explained

We are going to switch our loss function into Binary Cross Entropy ! So we can
breakdown our classification values into a binary. So we'll have two curves to optimize

since we now have a convex function :

WHEN ACTUAL
CLASS =1

1 SIGMOID

;T\ QUTPUT

WHEN ACTUAL
CLASS =0

SIGMOID
QUTPUT

17/07/2025

nnnnnnnnnnn
nnnnnnnnnnnnnn

rSingle Neural Network visually explained

All we have to do is to apply our gradient descent (SGD) we've seen previously

WHEN TRUE WHEN TRUE
VALUE =1 VALUE = 0

17/07/2025

I

Wait ! There's still some work to be done !
- We also used the MSE as a Metric, so we can ensures that our model learnt something
- We should change our metric, it can be Accuracy

ingle Neural Network visually explained

METRIC

ACTUAL PREDICTED CORRECTT
VALUE VALUE

ACCURACY =
TOTAL PREDICTIONS

TOTAL CORRECT

17/07/2025 Bepsi® gmmes.. 51/ 74

03
Multi Layer Perceptron

17/07/2025

I

ulti Layer Perceptron

What if | want a more complexe neural network ? By adding a neuron or changing
activation function into a step, you have now a Multi-Layer Perceptron.

By chaining multiple neuron together, we truly have a neural network !

X,

step step

Xz

17/07/2025 Eepsi' srtmse. 53 / 74

v

i | Definition: Neural Network Architecture

ulti Layer Perceptron

In general, a neural network architecture (a

configuration) consist of three layers types:

- Input layer: A layer with a node for each network
Input

- hidden layer(s): A layer full of artificial neurons.

- output layer: A layer representing the network’s
output

Each layer has it's own number of neurons, or
units.

1 | Warning

There should be only one input and one
output layer, but there may be an arbitrary
number of hidden layers.

input layer

X5

hidden layers

output layer

ctep

=tep

Xz

17/07/2025

sssssssssss
ssssss

rMulti Layer Perceptron
Neural networks can be wide: having many neuron in a given hidden layer, or deep
having many hidden layer in the network. It's up to you to choose the right amount of
neuron without over-fitting, and have a acceptable computational cost.

input layer hidden layers output layer

N a

sigmoid

X

N/

sigmoid

X2

17/07/2025 Blepsi' 5088 55 / 74

I

ulti Layer Perceptron

Output Units ra

Hidden Layers

Dense

“, . A I o ™ g s i "
A (L T T Py P A | e) ey e
| [N AV A A A Embeddings
/ FAR LY x"‘-. VAV A AV Y| I I
.. ‘.... . N .". Sparse Features

Wide Models Wide & Deap Modals Deep Modeals

%,
S T A
i TN y
;s FAF AN \ LY o A4 i
X
| 1
1
1

Figure 1: The spectrum of Wide & Deep models.

nttps.//arxiv.org/abs/1606.0//92v]

17/07/2025 Bepsi® o2t 56 / 74

https://arxiv.org/abs/1606.07792v1

04
Example of code

implementation

17/07/2025

Ie

xample of code implementation

Applied example: Linear Regressor with a neuron. PyTorch

If we were to implement this through a code, we will be using PyTorch implementation. Hence, you
can notice this implementation matches this conference visually explained neural network

import torch
Create a linear model with 1 inpute and 1 target
class LinearModel(nn.Module):
def init (self):
super(LinearModel, self). init ()
self.linear = nn.Linear(1, 1)
def forward(self, x):

return self.linear(x) # This is our Linear Activation

model = LinearModel() # Initialize our model
criterion = nn.MSELoss() # Setting our loss metrics to MSE
Setting our Gradient Descent, as shown visually earlier

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

py) 4

2

3
4
5

training loop

for epoch in range(epochs)

inputs = torch.from numpy(x train)

target = torch.from numpy(y train)

optimizer.zero grad() # Clear any gradient calculation, we
dont want them to carry over the next iteration loop.

ouputs = model(inputs) # Launch prediction, store them in
outputs
loss = criterion(outputs, target) # Calculate loss value

for the predicted output

loss.backward() # Calculate feedback gradient
optimizer.step() # Apply parameters from feedback gradient
print("Epoch {}, Loss {}".format(epoch, loss.item()))

17/07/2025

Ie

xample of code implementation

Applied example: Linear Regressor with a neuron. PyTorch
Now to launch prediction with a trained model, we need to implements the inference code like
this

1 import torch

2
3 with torch.no grad(): # We don't need gradient in the inference

4 predicted = model(torch.from numpy(x test)) # Launch prediction

5 print(predicted) # Print prediction

Note : PyTorch might feel overwhelming at first, but it is the most used framework for
researching, including open source LLM !

17/07/2025 Bepsi® 3. 59 / T4

Ie

© 00 N O U1 A W N B

T
N R ©

13

xample of code implementation
Applied example : MLP Tensorflow + Keras for image classification (10 classes)

model = tf.

tf

1)

.keras.
tf.
tf.
tf.
tf.

keras.
keras.
keras.
keras.

keras.
layer.
layer.
layer.
layer.
layer.

model. compile(

models.Sequential ([
Flatten(input shape(28, 28)),

Dense (128, activation='relu'),

Dropout(0.20), # Deactivate randomly 20% of the network

Dense (128, activation='relu'),

Dense(10)

optimizer=tf.keras.optimizer.Adam(0.001), # Self adjusting LR

loss=tf.keras.losses.SparseCategoricalCrossentropy(from logits=True),

metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]

)

model.fit(ds _train, epochs=6, validation data=ds test) # Do everything we said in the
training loop

Less popular than PyTorch, but beginner friendly.

17/07/2025

Bepsit gres.. 60 / 74

Ie

Sidenode : Backend architecture. (Specific for PyTorch)

xample of code implementation

As you may know, we have multiple hardware available for training.

- mps for Mac Silicon chip (M1, M2, M3, M4, M5)

- cuda for Nvidia CUDA and AMD ROCm support

- MTIA for META (Facebook) TPU Support (Meta Training and Inference Accelerator)
- XPU For Intel GPU

Question is : How to check and enable automatically a backend accelerator ?

1 1if torch.accelerator.is available(): ﬁﬂb
2 device = torch.accelerator.current accelerator()

3 else

4 device = torch.device("cpu")

17/07/2025 Bepst gmmen.. 61/ 74

05
Multiclass-classification

17/07/2025 Eepsi' mxmst. 62 / 74

I

Let's make it more complicated by
introducing a new type of problem: A
multiclass-classification.

ulticlass-classification

DIST (MI) CATEGORY

SILVER
GOLD
SILVER
GOLD
BRONZE
SILVER
BRONZE
GOLD
SILVER
SILVER
BRONZE
SILVER
SILVER
SILVER
BRONZE
BRONZE

[=]
M

Do BOCoNLNI

For that, we need to predict the following

classes:

- Silver

- Gold BRONZE
\ BRONZE

- Bronze . : BSITI?VNEZRE

GOLD
The label is a category, which means that :' oo
order is not implied, we just want to : : coLD
. - . : . SILVER
classify them without worrying about : : ooLp

which class is better than which. : _' BRONZE

GOLD

ARWNWN I 300D O

3
4.
2
5.
2.
4
4,
3.
2.
4.
3.
3.
2.
5
2
3
2

VNS ONOUMIN~NOO~ W~

17/07/2025 E epsi®

2 63 / T4

I

ulticlass-classification

We know that computers cannot handle

string data, since we are using math. SILVER
- We are going to use the One-Hot a1 vER
Encoding. GOLD
BRONZE
It will create a new column for each class.
Then treat each column as a binary ggtg

classification output assigning 1 for yes, O SILVER
for no. SOLD

17/07/2025 B epsit

I

ulticlass-classification

We're going to start building our network:

- this time using a another activation function: ReLU

- We have 2 columns as input (square)

- And having three neuron. (white circle)

- We need to match the number of class as output, so
we'll have three neurons for final prediction of
either 1or O (in red)

17/07/2025 Elepsi oxinste. 65/ 74

I

ulticlass-classification

#1 #2 #3 #4 #5

O 170120

Here, we have the 5 first classification.

Take the first data point as an example. for the silver
class should ideally predict O, 1, and O for the first,
second, and third neurons the neural network SILVER

In short neurons for each dada point, the neuron of
the actual class should output 1 while other should
output O.

BRONZE

17/07/2025 Eepsi’ 3¥Be 66 / 74

I

We're also changing the activation function : Softmax The softmax activation performs a
two-step computation on its input : Exponential + Normalisation

ulticlass-classification

DATA IN DATA QUT

—> —>

-SOFTMAX

EXPONENT

-SOFTMAX

-SOFTMAX

Why do we have normalization at the end ?

17/07/2025 Bepsi' w2t 67 / 74

rI\/Iulticlass-classiﬁcation

3. Eachinputis divided by the sum of all inputs.

2. Each neuron performs the This b the output of th | network.
1. We'll need to check for the full layer. ox onentiaticl)an on its inout. which B BEETS IS SR SR R e S
So we have the three unit of neurons, p _ put, As.a l.'esultthe sum of all output will always be 1.
then becomes the input for the This is a useful outcome because we can now treat

one for each class. normalization step the outputs as probability values

NORMALIZE
EXPONENT —

SOFTMAX

+u+m ‘

SILVER

BRONZE

17/07/2025 g

I

ulticlass-classification

ACTUAL PREDICTION

Let's take an example where the actual class is silver,
And we suppose that each neuron’s softmax
activation produce 0.5, 0.2, and 0.3

Treating them as probabilities, we assign 1to the
neuron with the largest output and O to the other

SILVER
neurons. B
In this example, the predicted class does not match
the actual class. This brings us to the next discussion, BRONZE
the loss function N

17/07/2025 B epsi

I

ulticlass-classification

We are going to use:
CategoricalCrossEntropy basically the
same as BinaryCrossEntropy but for more
than 2 classes.

T SIGMOID

/I\ QUTPFUT

17/07/2025

I

ulticlass-classification

PREDICTED ACTUAL
Here is an example of the loss function. The : 0
actual class is Silver, so we want the NN to
output the highest probability at the second
neuron.

- In one of the earlier epoch, we can see that
the output at the second neuron is 0.3
(bad)

- In one the later epoch, this neuron will
produce 0.6 which is better (loss decreased)

PREDICTED ACTUAL

0.1

17/07/2025 Eepsit miuse 1/ 74

06
Some popular model

right know

17/07/2025

I

ome popular model right know

- General use case : LSTM, RNN, GAN, CNN, ...

- LLM via Transformers : NEW SINCE 15 JULY 2025 : KIMI-K2 Mistral, DeepSeek, Qwen,
Stable-Diffusion, Grok, GPT, Claude..

- Computer Vision: Yolo, EfficientNet, ResNet..

Common points: they are all feed-forward based archicture.

- Deep Reinforcement Learning Algorithms : Q-Learning, Deep Q-Learning, Double Deep
Q-Learning..

17/07/2025 Bepsi' orms. 73 / 74

Thank you for your attention !
This is the end of the morning session !

Bon appétit !

T

eferences

- Patrick Gallinari - Introduction to Deep Learning (Sorbonne Université)
- Inhttps.//www.tensorrlow.org/datasets/keras_example

- Ihttps://mlu-explain.github.io/neural-networks

- Ihttps://kdimensions.com

17/07/2025

sssssssssss

https://www.tensorflow.org/datasets/keras_example
https://mlu-explain.github.io/neural-networks/
https://kdimensions.com/

	Context
	Fundamentals of Neural Networks
	Brain methaphor
	Single Neural Network visually explained
	Weighted sum and parameters
	Activation function
	Activation function
	Applied example : Linear Regressor with a neuron.
	Applied example : Linear Regressor with a neuron.
	Applied example : Linear Regressor with a neuron.
	Applied example : Linear Regressor with a neuron.
	Applied example : Linear Regressor with a neuron. Adjusting Parameters
	Applied example : Linear Regressor with a neuron. Adjusting Parameters
	Applied example : Linear Regressor with a neuron. Adjusting Parameters
	Applied example : Linear Regressor with a neuron. Launching Predictions
	Applied example : Linear Regressor with a neuron. Measuring
	Applied example : Linear Regressor with a neuron. Loss function
	Applied example : Linear Regressor with a neuron. Loss function : MSE
	Applied example : Linear Regressor with a neuron. Loss function : Defining a goal
	Applied example : Linear Regressor with a neuron. Recalling w1 and b0
	Applied example : Linear Regressor with a neuron. Feedback
	Applied example : Linear Regressor with a neuron. Feedback : Learning
	Applied example : Linear Regressor with a neuron. Feedback : Minimizing loss
	Applied example : Linear Regressor with a neuron. Feedback : Loss curve
	Applied example : Linear Regressor with a neuron. Feedback : Loss curve
	Applied example : Linear Regressor with a neuron. Feedback : New goal : find a
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Feedback : Derivative or Gradient Descent
	Applied example : Linear Regressor with a neuron. Last Step : Adjusting value based on the feedback
	Applied example : Linear Regressor with a neuron. Last Step : Learning rate
	Applied example : Linear Regressor with a neuron. Last Step : Learning rate
	Applied example : Linear Regressor with a neuron. Last Step : Cost & Metrics
	Applied example : Linear Regressor with a neuron. Last Step : Cost & Metrics
	Applied example : Linear Regressor with a neuron. Last Step : Cost & Metrics
	Applied example : Linear Regressor with a neuron. Performance during training
	Applied example : Linear Regressor with a neuron. Performance during training
	Applied example : Linear Regressor with a neuron. Performance during test
	What happen when we do not have a convex loss function ?

	Multi Layer Perceptron
	Example of code implementation
	Applied example : Linear Regressor with a neuron. PyTorch
	Applied example : Linear Regressor with a neuron. PyTorch
	Applied example : MLP Tensorflow + Keras for image classification (10 classes)

	Multiclass-classification
	Some popular model right know
	References

